ACPeTPEF TODAY

XML and TPF - the new world meetsthe old

by Morry Veer

his article is a reflection of a process I started around one

year ago - the process of learning XML. While evaluating it
for use both on my website and on my résumé, I came to realize
that this was where the internet was headed, and that it would be
invaluable on TPF. I offered to summarize my knowledge to
several people, and when I offered it to the good people
(person?) at TPF Today, I was supported whole-heartedly. Thus
begins what may turn out to be a very open ended project.

XML is, quite simply, a structured data format using plain text -
no binary data. Very similar to EDIFACT, but without the
committees, the recommended data elements, and so on. XML is
actually an outgrowth of the same source as HTML: SGML,
which has been an ISO standard since 1986 and has been linked
with IBM. XML is more of a Meta-data format, limiting and
describing how you structure all data. Within that framework
you create your own structures, also known as Document type
definitions.

So why XML? Well, for one, it is rapidly becoming the standard
for cross platform data communications over the internet. With
the ever increasing interconnectivity of TPF systems and internet
applications (Orbitz, Travelocity, Expedia) the pressure will only
increase for TPF to connect to the world wide web. And it needs
to be done quickly — the term ,,internet time* was not coined
without reason. It seems that, despite its virtues, we have failed
to establish EDIFACT as the ,,standard for everyone®, so XML
has come along and filled that gap. With XML being designated
as a core technology in Microsoft’s .NET strategy, I think we can
all be assured that XML will be around for quite some time.

My objectives with this project are twofold. The first is to
describe enough about XML so that the general TPF community
understands its capabilities. The second is to pursue the
structure of developing an XML engine within a TPF system,
and analyze the potential pitfalls, dilemmas, and optimizations.

Before I continue, I should point out that IBM has already ported
an XML engine to the TPF platform, and is making it available
with the PUT 14 TPF release. I encourage everyone to go read
about it online (see below). It covers many of the points I will
raise here, but there is also a large point of division. Because the
majority of the TPF community is not familiar with C++, I plan
on discussing XML from the standard TPF platform point of
view — databases and assembler. I myself know C++ quite well,
but I presume less than expert knowledge in my target audience.

XML - Lots of Character(s)
XML is character based. That means that you should be able to
open up an XML document with a text editor and be able to read

and edit it. XML is based upon the Unicode standard, which
means it supports more than the 80 or so characters with which
most English speakers are familiar. Just to make things
interesting, there are "... a grand total of 94,140 encoded
characters in Unicode 3.1."! This creates a few problems. The
first is that 94k characters cannot be encoded in 8 bits, or even
16. Unicode for all intensive purposes is a 32 bit character
encoding scheme. The lucky part is that most business related
applications and communications, especially the kind that would
be useful in TPF, would be using the standard Latin characters
99.999% of the time, if not always. Given that, you can simplify
processing considerably by either rejecting, ignoring or creating
special case processing for characters outside the standard set.

The other difficulty comes with the character encoding. The first
127 character values x’00' — x’7f” in Unicode are ASCII
characters. There needs to be a translation into EBCDIC for
processing on the TPF box. There already exists a UTF (Unicode
translation format) that does what we need: UTF-EBCDIC. It
preserves all the information in the original document, by
creating multi-byte sequences for the Unicode characters higher
than x’7f’, and translates everything into EBCDIC (see link
below).

TPF is above all a system designed for performance, and some
flexibility has and will be sacrificed. It would be nice if we
could use Chinese characters (Hanzi) for passengers from
Beijing, but — TPF isn’t there yet. How do you calculate the
length of a name using only 2 Hanzi, but maybe 8 bytes in UTF-
EBCDIC? To this end I propose the following solution: reject
XML documents back to the sender (presuming that’s possible)
if they use Unicode characters beyond x’7f’. Translate the
ASCII into EBCDIC, and treat it as if the translation will
eventually become UTF-EBCDIC.2

Note that all this presumes we need to work in EBCDIC. There
is no reason why the XML processor cannot work in Unicode
and translate individual pieces of data as requested by the
application. I leave this as an exercise for the reader (I have
always wanted to say that).

Footnotes
! From unicode.org, last updated 10.08.2001

2 anyone familiar with Unicode will undoubtedly be aware of
big-endian and little-endian issues. I am essentially ignoring
these issues, however they would be addressed in the same way
as the character encoding. It is most likely that no matter how
much simplification we try to achieve, some sort of whole-
document transformation will be necessary.



ACPeTPEF TODAY

Links and Resources

UTF-EBCDIC http://www.unicode.org/unicode/reports/tr16/

XML.org http://www.xml.org

Worldwide web consortium http://www.w3.org

Unicode http://www.unicode.org

TPF TODAY http://www.tpftoday.com/

This article online http://members.bigfoot.com/~morryveer/index.html/tpfxml
IBM TPF http://www-4.ibm.com/software/ts/tpf/

XML for TPF online users guide http://www-4.ibm.com/software/ts/tpf/pubs/xml/xhome.htm
Apache project http://xml.apache.org/

This document and paper are © Morry Veer, 2001.

Reproduction in whole or in part is prohibited without permission of the author. Permission can be obtained through email at
morryspaml @yahoo.com . This has been produced as a private work, and is not affiliated with any company or organization. All
products (XML, TPF, Unicode) and websites are the property of their respective owners — this document is not intended to infringe
upon those property rights.



