
ACP•TPF TODAY

9

Moving From SabreTalk to C
Part 2: Data Concepts and Data Manipulation
by Jeff Robinson

In the first installment, I discussed how SabreTalk Procedures compares to “C” function. In this article, I’ll delve into the how the
basic data elements in SabreTalk can be transformed and used in the “C” language. You can also access these lessons online at

www.robisoft.com along with quizzes, tests and links to other resources to aid you in your journey from SabreTalk to “C “.

Data Concepts
SabreTalk uses the “Declare” statement to define data areas and data fields. In TPF/C, although there is no equivalent statement to
the “Declare”, an equivalent means of defining data areas is provided through a rich set of “data type” keywords similar to those
used in SabreTalk. When defining data in SabreTalk, you used the following format (the “...” indicates multiple definitions are
possible): DECLARE [level] variable_name [dimension] data type ...

Example: DECLARE item Character(500);

To define data in “C”, the “data type” attribute would be indicated first in the clause; here’s an abbreviated format:
Data_type variable_name [dimension],;

Example: char items[500];

The following table show the corresponding relationships between a “data type” in SabreTalk and those used in “C” to define data
fields.

To use the “C” equivalents in a TPF/C program, place the name of the type in front of the field name (or fields) followed by a
semicolon. In TPF/C, the declared field names are known as variables and are usually composed of alphanumeric characters and
underscores.

SabreTalk also allowed for the use of multiple “dimensions” for a data field known as “arrays”. “C” also allows the use of arrays and
the use of subscripts to access arrays. Arrays indicate that the named data field acutally occupies contiguous areas of storage in the
size denoted by the data type for the number of times specified in the array number. For example, in SabreTalk, you may have done
this to indicate that a character field occupied 8 bytes of storage: DCL first_name Char(8);

In “C”, you would declare the same field like this: char first_name[8];

Note that “C” uses the square brackets to indicate an array whereas SabreTalk used parentheses. Both notations indicates to the
compiler that the character “string” variable actually takes up 8 bytes rather than 1 as is usual for the “Char” data type.

sepyTataDklaTerbaS egasU tnelaviuqEC elpmaxEC

rahCriretcarahC sgnirtsretcarahcenifeD rahc ;cbarahc

NIBroyraniB atadyranibtib23ro61enifeD)gnol&trohs(tni ;2mungnol;1muntrohs

TIB stibforebmunenifeD
sepytatadtnirorahc
nolocehtybdeifidom

.rotarepo

;8:dcbarahcdengisnu
;61:3muntnidengisnu

CEDrolamiceD smetiatadlamicedenifeD elbuod ;eraf_riaelbuod

taolFlamiceD smetignitaolflamicedenifeD taolf ;eraf_gvataolf

ACP•TPF TODAY

10

Initializing C Variables
In SabreTalk, you’re not allowd to assign a value to your declared data areas at the time you declare them. This is not the case with
“C”. In “C”, you can save time and code by initializing your data when you declare it. To initialize a “C” variable, simply place an
“equal” sign followed by the literal data to set the variable to when you declare it.

For example: short age=35,weight=175;
char first_name[8]={“Joseph”};

Notice also in the above example that like SabreTalk, “C” allows you to make more than one declaration in a statement. Thus, we
declared both “age” and “weight” after the same data type “short”. The same could have been done after the “char” data type. Also,
notice that for the character “array”, curly brackets had to be used to set the initialize data. This is the standard for initializing array
data in “C” and must be used with any array variable that is being initialized. One reason that field names in “C” are known as
variables is because the data being held in those named storage areas are subject to change. In SabreTalk, if you wanted to indicate
that a declared data item could not be changed, you did something like this:

DCL radius DEC FLOAT CONSTANT;
CONST radius, 3.14;

The “Constant” keyword was coded to make the data field unchangeable. In “C”, if you wanted to indicate that a field can not to be
changed, you would insert the “const” data attribute keyword in front of it like this:

const float radius=3.14;

If you declared a field in the preceding manner, you could not change the initial value later in your program. Any attempts to do so
in your program would result in a compiler error.

What “C” Leaves Behind
There are several data-related functions supported by SabreTalk that do not have a corresponding implementation in “C”. First,
unlike SabreTalk, “C” does not allow for “Picture” data attributes or “Picture” specifications when you declare your variables. Thus,
there is no allowance for “Edited Character-String data”, “Suppression characters”, “Insertion characters”, or “Drifting characters”
to modify data field content. Instead, “C” allows this to be done at the coding level using special “format specifications” with
functions from the standard “C” library.

Secondly, “C” does not allow you to make “label” declarations like SabreTalk. Instead, in “C” you can simply code labels starting in
column 1 and follow them with the colon; doing this indicates to “C” that you want to declare a label.

Example: label1: num1=num2;

Likewise, “C” does not allow you to “declare” function names in a DECLARE/DCL statements. (However, in “C” you must declare
function prototypes before you code the function.).

Literal Data
Both SabreTalk and “C” allow for use of literal data within the source program. Literal data represents values thatyou code explicitly
within your source code (i.e. no variable or symbol representation). Within “C”, the use of literal data is genarally called “constant”
data. The following table shows the corresponding usage of literals in both languages.

epyTtnatsnoC/laretiLklaTerbaS elpmaxE epyTtnatsnoC"C" elpmaxE

yraniB 6-,00052 tnatsnocciremuN L552,552

gnirts-tiB B'010110' tnatsnocciremuN 08x0

gnirts-retcarahC 'olleh' tnatsnocgnirts/retcarahC 'a',"olleh"

lamiceD 5.52 tnatsnocciremuN 5.52

gnitaolFlamiceD 5E.82 tnatsnocciremuN 2E57.51,f0e3

ACP•TPF TODAY

11

As you begin coding in “C”, remember that using literals is very similar to what you did before so you can probably continue to code
literals as you have always done in SabreTalk.

Pointers
Both SabreTalk and “C” make use of a data type definition known as Pointers. A pointer in “C” is actually the same as it is in
SabreTalk: a variable in which an address to another location is stored. The difference to be found is in the way the two languages
allow pointers to be declared. In SabreTalk, you could declare pointers by using either the “POINTER” data attribute or the
“BASED” data attribute.

DECLARE newptr POINTER;
DECLARE secondptr BASED(newdata);

Both of the above declaration create pointer variables. The first is called an explicit declaration while the second is an implicit
declaration. In “C”, the way to explicitly declare pointers is by using the asterisk “*” operator in a regular data definition statement.
Here's an example: char *newptr;

In the preceding example, we just declared a pointer variable named “newptr” with a data type of “char”. This means that the
“newptr” will hold the address of a data location containg “character-string” data. If any other data type had been used, then “C”
would expect data of that type to be at the address stored into “newptr”. In “C”, there is no corresponding “BASED” keyword to
implicitly declare pointers. The only implicitly declared pointeres in “C” are character arrays. Anytime you declare a character array
of any non-zero size, “C” will treat the unqualified name of the character variable as a pointer. In “C”, there is no limit on the
number of pointers that you can explicitly or implicitly declare. Plus, you can also declare and array of pointers to a data type. The
example below declares an array of 5 pointer values for the “newptr” array.

short *newptr[5];

Initializing Pointer Variables
Initializing explicity declared pointers in SabreTalk is a process that takes place after the pointer is declared; this usually involves
assigning the pointer variable another pointer’s value, using the built-in ADDR function, or using the START statement of a macro
to assign the contents of a register to a pointer. In “C”, pointer variable initializaion can be done at declaration time or later within
the body of the program. To initialize a pointer variable at declaration time in “C”, you must use the ampersand “&” operator to get
the address of another variable — unless that variable is a character array, in which case you only have to supply the variable name.
You can do either method at declaration time like this:

char first_name[8]={“Joseph”}, *nameptr=first_name;
short age=38, *age_ptr = &age;

Now, “nameptr” points to the same location as “first_name”. Notice that the unqualified usage of the “first_name” variable is treated
as a pointer itself. And “age_ptr” points to the same storage location that contains the value “38”. Here, placing an ampersand in
from of “age” causes its address to be assigned to “age_ptr”. There are many more details involved in the proper use of pointers in
“C”. For complete information, consult “The C Programming Language” book by Brian Kernighan and Dennis Ritchie.

Structures
Another common data representation to both SabreTalk and “C” is the use of structures. Structures allow both SabreTalk and “C” to
group several data fields (not necessarily the same data type) into one, cohesive logical group. In SabreTalk, you did this by coding
something like the following:

DCL 1 address,
2 street CHAR(20),
2 city CHAR(20),
2 state CHAR(10),
2 zip PIC ‘99999’;

However, in “C”, the struct keyword is used to indicate the start of a structure. Also, the data feilds declared within the structure
must be enclosed in an opening/closing curly brace pair and the use of the “level” qualifier numerals (i.e., “1”, “2”) are not allowed.
Here’s how the preceding SabreTalk structure would look in “C”:

ACP•TPF TODAY

12

struct address
{

char street[20];
char city[20];
char state[10];
int zip;

};

In the structure above, “address” is simply the name we’ll give
to this structure definition to identify it later. Declaring the
structure as we’ve just done doesn’t cause any storage allocation
to take place.

Notice that the semicolon in the “C” version follows each
declared data field (instead of a comma like in SabreTalk) and
the structure’s closing brace.
In “C”, you can have structures imbedded within structures; this
feature corresponds to the SabreTalk feature of having multiple
levels within a structure.

Allocating Structures
In “C”, structure declarations in and of themselves don’t allocate
any storage. Storage is only allocated when new variables are
defined as belonging to the type defined by a previously declared
structure. One way to assign variables to a declared structure is
at definition time. Here isan example using the preceding
“address” structure.

struct address
{

char street[20];
char city[20];
char state[10];
int zip;

}homeaddr;

The preceding declaration of “homeaddr” causes storage to be
allocated to hold a structure matching the data area required to
hold each field in the “struct address” structure definition.

Another way to have caused a new structure to be allocated is to
have made the following definition within the source code after
the “address” structure had been defined:

struct address workaddr;

Although not to be discussed in detail here, you can also declare
an array of structures in “C”. Here’s an example:

struct address alladdr[25];

The declaration above declares a variable of 25 structures having
the type of “struct address”.

Assigning Structures
In “C”, you assign values to a structure when you define it or

anytime within the body of your source code. If you do it a
definition time, you must use a similar method discussed with
initializing arrays. Here’s an example:

struct address workaddr = {“Main Street”, “Los Angeles",
“CA”, 90211};

Within the source program, you can only make structure
assignments by assigning a structure to another structure or by
assigning each individual member of the structure to their own
values. Here’s an example of doing both:

workaddr2 = workaddr;

workaddr3.street = “Beach Blvd”;
workaddr3.city = “Miami”;
workaddr3.state = “FL”;
workaddr3.zip = homeaddr.zip;

Note that the use of the period “.” is required to access indi-
vidual members of a structure within the source code (as shown
in the preceding example.

Pointer to Structures
In “C”, a pointer to a structure can be declared much the same
way as pointers to other data types. Here is an example:

struct address myaddr, *addressptr=&myaddr;

In the preceding example, “addressptr” is a pointer of type
“struct address” which is also assigned to the same storage
location as “myaddr”. Although an assignment was made, it did
not have to be made at the time of the declaration.

Generally, in “C” as in SabreTalk, pointer structure variables
should only be used in operations involving structures of the
same declaration. Although not discussed here, an array of
pointers to structures is also allowed in “C”.
Accessing the individual members of a pointer to a structure is
different than with normal variables defined to a structure. In the
case of pointer to structures, you must use the “->” operator to
reference each item. Here’s another example using the pointer
defined above.

addressptr->street = “Beach Blvd”;
addressptr->city = “Miami”;
addressptr->state = “FL”;
addressptr->zip = homeaddr.zip;

That about wraps up our review of data concepts. In the next
and final installment, we’ll look at the coding an control
statements you’ll need to be familiar with as you transition from
SabreTalk to “C”.

