
ACP•TPF TODAY

8

Confused and Confounded?
The ALCS macro libraries explained
by Ian Worthington

There is a lot of confusion regarding which ALCS macro datasets should be used for application assemblies and in what
order. Hopefully this article will bring some clarity to this situation.

This article was originally written as an internal memo to our customer to explain our decisions regarding the various
dataset concatenations we use for program assemblies and generations but, given experiences installing and customising
ALCS at different sites, it may well be of interest to a wider audience.

BACKGROUND

Prior to ALCS 2.1.1, all of the ALCS macros, be they for the programming interface, recoup, system generation, or moni-
tor assembly only, were shipped to the customer in a single dataset. A second dataset contained the macros associated with
the IPARS “sample application”.

In an attempt to bring some clarity to the issue of which macros were legal to use in what situations, and in order to meet
EU directives on clearly defined programming interfaces, ALCS V2.1.1 was shipped with 4 macro libraries:

yrarbiL noitpircseD

1CAMCXD
ehtfotraptaht:ecafretnignimmargorpesu-lareneg(IPUGehtfotrapgnimrofsorcamgnimmargorpnoitacilppA

.)sesaelertcudorpssorcaelbatsebotMBIybdeetnaraugecafretnignimmargorp

2CAMCXD .noitacilppaelpmasSRAPIehthtiwdetaicossasorcaM

3CAMCXD .)ylbmessaerrotinomdna(noitarenegSCLArofderiuqersorcaM

4CAMCXD

tcudorp(IPSPehtfotrapgnimrofsorcamgnimmargorpnoitacilppadna,stixeresurotinom,puoceRrofsorcaM
ro,esaelerotesaelermorfegnahcyamhcihwecafretnignimmargorpehtfotraptaht:ecafretnignimmargorpevitisnes

noitacilpparuoyfognidocernevero,ylbmessaergnitatissecenylbissop,ecivresfonoitacilppaehtfotluserasaneve
.)smargorp

Although this was a well-intentioned effort, it was never very clearly explained and by itself appears to cause more confusion
than almost anything else!

WORKING WITH THE MACRO SETS

In addition to the libraries listed above, you will have an application macro library, and one or more MVS system macro
libraries (typically SYS1.MACLIB, SYS1.AMACLIB, SYS1.MODGEN, and SYS1.AMODGEN, depending upon your
MVS level and how your MVS system programmers have chosen to install MVS).

In order to prevent system problems it is important to tightly control the availability of macro function to appropriate parts of

ACP•TPF TODAY

9

the organisation. For example, a naïve application programmer with previous MVS programming experience could decide to
use MVS I/O facilities from within an ecb-controlled program leading to severe ALCS performance problems. Even experi-
enced application programmers sometimes make use of MVS facilities that are potentially dangerous and definitely not recom-
mended, such as WTO, the incorrect use of which can hang your MVS system.

It is also important that application programmers are prevented through accident, or well-intentioned naivety, from usurping
macros that are part of the IBM-supplied macro set. This is most easily avoided by choosing a concatenation sequence that
places the application programmer-controlled macro dataset(s) after the IBM-supplied datasets. (This assumes appropriate
RACF access controls are in place for the IBM-supplied datasets, of course!)

This does not, of course, prevent application programmers from creating macros with the same names as IBM-supplied
macros that are not included in the assembly concatenation sequence for the associated programs. Nor does it prevent the
creation of macros with names that might exist in future releases of ALCS. Only enforcing the reserved name rules specified
in the product manuals, preferably by encoding them within your library management system, can prevent both of these
problems

MACROS .v.TASKS

We can divide ALCS assembly tasks into the following groups:

:smargorpnoitacilppalamroN .IPUGSCLAylnognisusmargorpesohT

:smargorpnoitacilppalaicepS .srotpircsedpuoceRgnidulcni,IPSPSCLAehtfoesugnikamsmargorpesohT

:stixeresuBCE .SCLAybdekovnismargorpdellortnoc-BCEdedoc-resulaicepS

:stixeresurotinoM .rotinomSCLAehtybdekovnismargorpdedoc-resulaicepS

:snoitarenegmetsyS .SCLAerugifnocotderiuqerselbatfoylbmessA

There is some debate about the utility of separating programs that make use of PSPI macros from the vast bulk of application
programs that use only the GUPI as:

• It tends to orphan off individual programs into a library separate from the rest of a functional package (which may not
be a problem if you use a library management system that presents a single user view, but could be if you use simple
PDSs to store your program base). You may be able to avoid this problem by moving all components of a package into
the PSPI library.

• There are some macros in the PSPI library set that are extremely useful and woefully under-utilised. Likewise your
application may have a significant dependency upon one or more PSPI macros. In this case you need to evaluate your
program base and decide if the costs of restricting the use of this part of the macro set outweigh the advantages.
Alternatively it may be possible to create a separate dataset containing those parts of the PSPI you wish to permit your
application programmers to use, and make the updating of this dataset a part of your regular PTF application proce
dures.

Personally I feel the segregation of the application program base has been beneficial for those applications for which I have had
involvement. Your mileage may of course vary.

ACP•TPF TODAY

10

For each of these tasks, the recommended libraries and concatenation sequence is as shown in the following table:

seirarbiL
lamroN

noitacilppA
smargorP

noitacilppAlaicepS
smargorP

BCE
resU
stixE

rotinoM
resU
stixE

metsyS
snoitareneG

1CAMCXD deriuqeR deriuqeR deriuqeR deriuqeR deriuqeR

2CAMCXD timO timO timO timO timO

3CAMCXD timO deriuqerylbaborP deriuqerylbaborP deriuqerylbaborP deriuqeR

4CAMCXD timO deriuqeR deriuqerylbaborP deriuqeR deriuqertoN

BILCAM.1SYS
NEGDOM.1SYS

.cte
timO dednemmocertimO dednemmocertimO deriuqerylbaborP deriuqertoN

orcamnoitacilppA
seirarbil

deriuqeR deriuqeR deriuqeR deriuqerylbaborP deriuqerylbaborP

In this table:

Required: This library is required for the assembly of this item.

Probably required: This library may be required, depending on what your programs do.

Not required: This library is never required.

Omit recommended: You almost certainly wish to exclude the use of macros in this library in this type of program.

Omit: You definitely wish to exclude the use of macros in this library in this type of program.

NEVER DXCMAC2?

In the above table, you may have notice that I suggest you never include DXCMAC2, the library containing the IPARS sample
application, in your assemblies. So what’s it there in the product for?

The IPARS sample application is just that: a sample application, used in practice for distribution of the Message Switching
application and other bits-and-pieces. But it also contains lots of components that you are not going to use, and will almost
certainly cause naming conflicts with your own application.

If you require components from the IPARS sample application then, it is far better to adopt these as your own and copy them
into your own application library. The concerns about service do not apply as strongly here as you probably don’t wish to
perform a full applications test after applying ALCS service anyway. It is advisable though to keep an eye on what service is
being applied to the IPARS FMID as there are occasionally changes (both to the sample application and to other sample
components, such as user exits) that you will wish to incorporate into your program base.

ACP•TPF TODAY

11

ODDS and SODS

There are a handful of components that cause organisational confusion all by themselves. This section discusses these.
In general the rule for maintaining a stable and easily serviceable ALCS system is that there must not be, ever, any datasets in
front of the IBM-supplied macro datasets within an assembly concatenation. Any changes you require to IBM-supplied ALCS
product code (as opposed to the IPARS sample application distributed as a separate FMID (DXCMAC2, DXCSRC2, DXCIWE1,
DXCHDR2, etc.) should be applied to the SMP/E-controlled libraries as USERMODs.

Any ALCS macro components positioned ahead of the IBM libraries nullifies the integrity checks SMP/E performs to ensure
that service is not being applied to components that have been locally modified.

Also, in order to ensure that ALCS is easy to service and upgrade, the number of USERMODs applied should be kept to an
absolute minimum. Some customers have appropriately mandated executive sign off for each and every USERMOD in order
to curb the tendency of their programming staff to make ad-hoc “improvements” to ALCS.

There are however a number of supplied components that must be modified by end-users in order to configure ALCS:

yrarbiL tnenopmoC stnemmoC

1CAMCXD

RESCXD otsseccaesilairesotsmargorpnoitacilppaybdesU.orcamnoitasilairessseccalabolG
aeralabolgnoitacilppaehtninoitamrofni

QECTR
rofsemanelosnoctroppuslanoitcnuflanoitiddaenifedotytilibitapmocFPTrofelbaliavA

.ecivresCPOTWehthtiwesu

2CAMCXD

DIRUCXD

deipocebnacosdnanoitacilppaelpmasSRAPIehtfotrapllaerastnenopmocesehT
.deriuqersadeifidomdnayrarbilsnoitacilppanaot

LASUCXD

xBxLG

3CAMCXD RSUCZCXD
snoitacinummocehtybdesU.orcamnoitadilavatadresunoitarenegnoitacinummoC
atadresusnoitacinummocehtnidecalpebotatadtrevnocdnaetadilavotnoitareneg

.aera

The fact that DXCSER and DXCZCUSR are in DXCMAC1 and DXCMAC3 is unfortunate. They need to be distributed
within the ALCS FMID (in order that ALCS can be assembled without dependency upon another FMID), but would have been
better located within their own PDS.

There are two options available for modifying these components:

1. Take copies of these into a dataset at the head of the assembly macro concatenation. Whilst this is a safe thing to do
as these are strictly user components, it does however open up an exposure that other macros that people wish to modify will
find their way in there as a matter of expediency.
2. Apply the required modifications as SMP/E USERMODs. Whilst this is undoubtedly an inconvenience, it is almost
certainly the lesser of the two evils and, after the initial installation phase, they will not change very often.

Ian S. Worthington is an independent ALCS and MVS systems consultant currently retained by British Airways Speedwing on
behalf of Avianca in Bogotá, Colombia. He is always interested in working on new projects and can be contacted via email at
IanWorthington@usa.net, or via fax through his virtual offices in New York at (+1 212 208 4463) and in London at
(+44 20 7900 2916).

