
DATALEX Netherlands BV 

   

 
 
 
 
 
 
 
 
 

A Layman’s Guide to TPFDF 
 
 

 
 
 
 

Authors : Ruud Schelvis & Simin Marsden 
 
Original Version : 1.0, November 2002 
 
Last Update : 1.1, 29/11/2002 
 
Issued by : Ruud Schelvis 
 
Reviewed by : Geoff Lowry 



A Layman’s guide to TPFDF – Table of contents  DATALEX Netherlands BV   
 

  I 

1 Introduction................................................................................................................ 1 

2 What is TPFDF? ........................................................................................................ 2 

2.1 History ................................................................................................................ 2 

2.2 Benefits of TPFDF............................................................................................. 4 
2.2.1 Application Programmer Productivity Benefits .......................................... 4 
2.2.2 System Management Benefits..................................................................... 5 

2.3 Files and Subfiles............................................................................................... 5 

3 Use of TPFDF in the development cycle................................................................... 7 

4 Epilogue...................................................................................................................... 9 

5 List of acronyms ....................................................................................................... 10 
 
 



A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  1 

1 Introduction 
 
This booklet aims to point out to Transaction Processing Facility (TPF) or Airline 
Control System (ALCS) professionals the considerable advantages of using the TPF 
Database Facility (TPFDF) product. For simplicity we shall just refer to TPF in this 
document and recognise that ALCS is included in that. 
 
There are an ever-increasing number of databases in the TPF environment. The business 
logic operating on those databases is getting more and more complex and more and more 
data is required to support that business logic. In traditional TPF database handling there 
is no standard database organization. Therefore, there are no common routines for data 
retrieval, searches, sorts or updates. Application Programmers need to be intimately 
aware of the physical size or the database records and the location of data within them. 
TPFDF enforces a standard for database organization. 
 
In the early days of the product series ACPDB, TPFDB and TPFDF there was huge 
resistance in traditional installations to the use of the database facility. Since the usage of 
the tool implies that additional overhead is created (the database access is not performed 
by the application but an additional layer is created) the fear was that the system 
performance would diminish. Particularly in the large American systems with a high 
system load, technicians were afraid to use it. As always, a change from a traditional low 
level Assembler approach to a higher level logical facility requires an intellectual leap. 
This is difficult, particularly for the older, more experienced people. The overhead is still 
there; the introduction of CEP (Common Entry Point) reduces overhead by removing the 
many ATTAC/DETAC operations that must be performed with the older “fast-link” 
mechanism. 
 
There will probably always be traditional databases; although many installations have 
already done or have decided to start a migration process of traditional databases into 
TPFDF databases. This may seem costly, but in terms of future development flexibility 
and improved productivity, they have and/or will benefit from it! The major European 
airline installations spearheaded this process and some have been working on it for 15 
years or more. 
 
The following is a small comparison between TPFDF and ‘traditional’ databases from the 
point of view of the programmer. When programmers design a new application using a 
database, they ask several questions. Questions like “What if the inserted item causes the 
database to overflow”, “What if the deletion of the item causes the database to become 
empty”, “What if the items must be in a particular sequence for rapid retrieval” or “What 
if the database has multiple indexes”. These scenarios can very quickly cause the 
program to be 80% database handling and only 20% “solving the business problem”, 
unless TPFDF is used. Then the 80% database handling complexity disappears. 



A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  2 

2 What is TPFDF? 
 
The TPF Database Facility (TPFDF) is a licensed IBM product. It is a database manager 
for applications that run in a TPF or ALCS operating environment. Basically, TPFDF is a 
common interface between the applications and the database. The following figure shows 
the relative position of the TPFDF product in a TPF operating environment. 
 

 
Figure 1 TPFDF System Overview 

2.1  History 
 
TPFDF is the current database product from IBM for the TPF and ALCS environments. It 
came into being as a result of a development partnership in the second half of the 1980s 
between IBM's International Airline Support Centre in the UK and the then Swissair 
Information Systems division in Zurich, now part of EDS. 
 
The product was originally conceived and developed by Hans Eisele in 1981. Hans 
Eisele, one of the “Grand Old Men” of TPF was working for Swissair IS at the time and 
named the product ACPDB. In the years thereafter, the product evolved firstly into 
TPFDB with IBM’s support and backing and is now the official IBM TPFDF offering as 
an option in the TPF product family. Enhancements to the TPFDF product are distributed 
separately from the base TPF products, but use the same PUT mechanism. 
 
Today the product has become the de facto standard in the TPF high performance 
transaction database environments. The basic concepts and functionality designed in the 
early 1980s for the databases of the time still applies to the databases being developed 

Applications 

TPFDF 

TPF or ALCS

Database 



A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  3 

two decades later. Of course, in the intervening time the product has developed a much 
wider range of functions, but it is still based on the initial concepts which proved to be 
the right design balance between flexibility and performance. 
 
In the original TPFDF versions the programmer still had to specify the data levels that 
TPFDF could use, but this is no longer a requirement; indeed this is no longer 
recommended and should be avoided. Currently, TPFDF is able to allocate levels 
dynamically (within levels 9 - D). The latest development by IBM, DECB Support, even 
removes this level limitation as it provides a variable number of extra levels which can be 
created dynamically. 
 
Data macro handling has also changed. When TPFDF first came on the market (in the 
form of ACPDB), all file characteristics had to be specified in the data macro. Now most 
file characteristics can be described in database tables, though data macro specification is 
of course still supported. 
 
With the availability of ALCS APAR AQ42082, and TPF Put 14, TPFDF now provides 
a “Common Entry Point (CEP)” for the TPFDF interface with application programs. 
Previously access to TPFDF functions was through the use of a “fast-link” mechanism 
that caused the application program to branch directly to the TPFDF segment to perform 
the required function (DBADD, DBDEL, etc.). The provision of a “Common Entry 
Point (CEP)” allows for new facilities to be introduced (macro trace, for example) and 
reduces the complexity of the TPFDF interface. This may also become useful in 
debugging. 



A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  4 

 

2.2 Benefits of TPFDF 
 
TPFDF provides benefits over ‘traditional’ database management. First there is the 
application programmer productivity benefit and secondly there is the system 
management benefit. 

2.2.1 Application Programmer Productivity Benefits 
In traditional database handling the application programmer is responsible and must be 
totally aware of the database organization and structure. They need to be aware of the 
physical characteristics (size and location) of the data. They have to build software to 
access and modify the database. They have to ensure that overflow handling and indexing 
is correct. Although other applications may already manipulate the traditional databases, 
the handling of the database for the ‘new’ application still needs to be written and 
requires extensive testing. 
 
Using TPFDF, the application programmer does not need to have database awareness. 
The database structure is totally removed from the programmer’s responsibility. All the 
programmer needs to do is focus on solving the business problem. This allows for the 
structure of the database to be changed at a later stage, perhaps to allow for increased 
number of ordinals or records, or perhaps for performance reasons, most often without 
requiring any changes to the application programs. Basically, TPFDF separates the 
database design from the application logic. The Database Administrator can then design 
the most appropriate database for the application, while the programmer needs only be 
concerned with writing the business logic into their program. 
 
The TPFDF product provides high-level macros or C language functions that act as an 
interface between the application and the database. TPFDF enforces a standard for 
database organization and provides common routines for database access (find, modify, 
sort, merge, etc.). These common routines have proven to work properly, thus saving the 
application programmer time required to build and test his/her own database handling 
software. In addition, the application programmer only needs to know the logical 
relationships and structure of the data, not the physical characteristics. Since TPFDF 
applications are independent of the physical database, they are easier to enhance for new 
functional requirements.  
 
When there is a need to add new data to an existing traditional database for whatever 
reason, it often happens that the layout of the record does not have any space for such 
enhancements. Traditional databases always seem to be full. The need to store additional 
data in an existing traditional database is often expensive as the applications, both 
existing and new, have to be rewritten to reconstruct the database such that ‘spare’ space 
is created. With TPFDF this is much easier.  
 
What you often see is that a traditional database is expanded with a file-address reference 
to a TPFDF file. Or that a traditional file is gradually migrated to TPFDF. An example is 



A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  5 

the PNR record where the Special Service Requests (SSR) are stored in an additional 
TPFDF file linked to the PNR. 
 
If you have ever attempted to add data to a traditional database when you are testing your 
application, then you will know how difficult and time-consuming it is. The TPFDF 
product has standard, well-proven tools available to add, replace or delete logical items 
and/or records. 

2.2.2 System Management Benefits 
The TPFDF product enforces a centralized database structure. Because the definition of 
the database is centrally maintained, certain database characteristics can be modified 
without affecting application programs. For instance, block size changes and any other 
physical databases changes are transparent to the application. 
 
Various utilities are available to support the database administrator, like database 
integrity checks and data collection tools for monitoring performance. The data collection 
tool can highlight database designs that can cause performance problems. Simple 
modifications to the central database definitions may improve the performance of many 
application functions without a need to modify the programs themselves. 
 
Another benefit is the ‘on-line data repair’. For example, if you have a corrupted 
traditional record it usually takes some careful ‘ZAFILing’ to correct it. These types of 
actions are a lot easier under TPFDF with on-line entries to manipulate the files (just ask 
any helpdesk worker!). 
 
A significant advantage using TPFDF is the high data integrity that is obtained from the 
standardised method in inserting, deleting and accessing records. This significantly 
reduces the possibility of database corruption or loss of data. 

2.3 Files and Subfiles 
A TPFDF database consists of files. Each file contains one or more subfiles. Each subfile 
contains a prime block and possibly one or more overflow blocks. These blocks contain 
logical records (LRecs). LRecs contain the actual data stored in the database. 
 
TPFDF allows you to read LRecs from, and add LRecs to, a subfile in any file in the 
database, without having to worry about the physical structure of the file. You do need to 
know, however, how the file is split into subfiles, and what type of index support (if any) 
is being used with the file. 
 
In a file, LRecs are distributed and accessed as follows: 
 

- Algorithms 
- Basic Index 
- Block Index 
- B+Tree Index 

 



A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  6 

Actually, TPFDF files are not much different from traditional files. The difference is that 
the handling of the database access is transparent to the application. The application does 
not depend on the storage structure of the access path to the data. The actual steps 
involved in retrieving or building an indexed file are done automatically by TPFDF. 
 
Like traditional records, TPFDF files can have various block sizes (for TPF block sizes 
L1, L2 and L4 are supported, for ALCS block sizes L1 to L8 are supported depending on 
the ALCS installation). For TPFDF, like traditional files, there are 3 types of physical 
files: Fixed Files, Miscellaneous Files and Pool Files. 



A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  7 

3 Use of TPFDF in the development cycle 
 
The following lists the ‘typical’ steps used in the development cycle: 
 

1. Requirements specification 
2. Functional Design (Logical Database and Application Design) 
3. Technical Design (Physical Database and Application Design) 
4. Application Build and Test 
5. Implementation 
6. Maintenance 
7. Future enhancements 

 
The initial benefits of TPFDF are the most obvious in the Application Build and Test plus 
Implementation phases. The first 3 steps will probably take the same amount of time 
irrespective of the choice between TPFDF and a traditional database. However, it is 
highly recommended to use TPFDF for new databases and to consider migration to 
TPFDF when enhancements to existing traditional databases are involved. Doing so 
radically improves productivity in steps 4 through 7. In particular, the amount of effort 
which ultimately goes into steps 6 and 7 over the lifetime of a TPF application usually 
vastly exceeds the total of steps 1 through 5. Such applications usually have a lifetime of 
decades. 
 
Step 3 does not benefit from TPFDF but is very important as the benefits in the following 
steps depend on a good design. The following gives an overview of some design 
considerations. 
 
3-Technical Design: A number of details must be taken into consideration when 
designing a TPFDF database. These details can make a big difference to performance 
issues once the database is established, and may become difficult to change. Hence it is 
better to consider such issues at the design stage. 
 
•  How much data will each subfile hold on average? This will involve considering the 

size of the prime block and whether over-flow blocks need to be of a different size. 
•  How will the data be retrieved? Do you need to retrieve based on a date, ID number, 

or name? This will determine what algorithm to use.  
•  How will the data be organised? Does the data need to be sorted or not? An organised 

database improves performance on queries, but if such queries are not required (for 
example a simple logging database), then the database need not be organised and thus 
save on the overhead involved in sorting the records. 

 
The TPFDF advantages and features applicable for steps 4 through 7 can be summarized 
as follows: 
 
4-Application Build and Test: TPFDF increases the programmer productivity. The 
application programmer only needs to know the logical relationships and structure of the 



A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  8 

data, not the physical characteristics. He/she does not need to worry about chaining and 
overflow. TPFDF utility commands (ZUDFM create/display/add/delete/replace etc.) 
facilitate the creation and manipulation of test data. ZUDFM OAS command provides 
formatted file information during trace. 
 
5-Implementation: TPFDF utility commands can be used to initialise new files. TPFDF 
recoup can be used to validate the new database. TPFDF recoup uses information 
contained in database definition (DBDEF) tables to chain chase long-term pool file 
records that are defined using the DBDEF macro. TPFDF capture/restore utility, 
information and statistics environment (CRUISE) commands can be used for fallback 
scenarios during implementation.  CRUISE is a validation, capture, and recovery tool for 
database administrators and system programmers and is based on file information that is 
stored in the TPFDF database definition (DBDEF). 
 
6-Maintenance: TPFDF utility commands can be used to repair damaged files. DBDEF 
table provides online information for each file. Individual sub-files can be located online 
using the TPFDF utility commands by use of algorithm, ordinal, part, interleave and path 
arguments. TPFDF recoup can be used for database validation and CRUISE can be used 
for database management. TPFDF data collection commands can be used to display 
statistics relating to system use.  
 
7-Future Enhancements: As TPFDF applications are independent of the physical 
database, they are easier to enhance for new functional requirements. A new type of 
Logical Record can be added to an existing database without disturbing the existing 
applications. Size of an existing Logical Record can be changed with minimum impact on 
existing applications. TPFDF recoup can be used to validate both existing and new 
databases after an enhancement. Should a problem occur during the implementation of an 
enhancement, CRUISE can be used to fallback to the old database structure. 



A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  9 

4 Epilogue 
We hope we have been able to clarify the basic characteristics, strengths and weaknesses 
of TPFDF and indicate the reasons to use TPFDF. 
 
Interesting web sites for people who want to know more about TPFDF: 

http://www-3.ibm.com/software/ts/tpf/pages/tpfdf.htm 
 

Datalex provides education services to TPF and ALCS professionals. See the following 
link for the possibilities: 

http://www.datalex.com/pdfs/Training_Todays_Top_.pdf 
http://www.book-smart.com/TPF_Education/ 

http://www-3.ibm.com/software/ts/tpf/pages/tpfdf.htm
http://www.datalex.com/pdfs/Training_Todays_Top_.pdf
http://www.book-smart.com/TPF_Education/


A Layman’s guide to TPFDF   DATALEX Netherlands BV 

  10 

 

5 List of acronyms 
 
ALCS Airline Control System 

ALCS is also referred to as TPF/MVS. Unlike TPF, ALCS runs as an 
application under MVS. As such it is able to utilize all the generic 
services that are provided to all jobs and applications running in this same 
environment. 

CEP Common Entry Point 
CRUISE Capture / Restore Utility, Information and Statistics Environment 

CRUISE is a validation, capture, and recovery tool for database 
administrators and system programmers. 

LRec Logical Record 
The internal format of individual TPFDF files does not correspond to 
the internal formats of records in a traditional TPF or ALCS database. 
In every TPFDF file, the data is organized into logical groups called 
logical records (LRecs). An LRec is the smallest unit of data that an 
application program can read, add, or delete. 

PUT Program Update Tape 
IBM distributes upgrades to the TPF and ALCS systems on a regular 
basis.  

TPF Transaction Processing Facility 
Try to obtain a copy of the ‘Layman’s Guide to TPF’. This will give 
you all the insight that you need. 

TPFDF TPF Database Facility 
Read this document to find out. 

 


	A Layman’s Guide to TPFDF
	Authors	:	Ruud Schelvis & Simin Marsden
	I
	Introduction
	What is TPFDF?
	History
	Benefits of TPFDF
	Application Programmer Productivity Benefits
	System Management Benefits

	Files and Subfiles

	Use of TPFDF in the development cycle
	Epilogue
	List of acronyms

